Unit 8: Weather, Water & Climate

Part I: Weather

TOPIC 1: CYCLONIC WEATHER

TOPIC 2: WEATHER INSTRUMENTS

TOPIC 3: WEATHER VARIABLES

TOPIC 4: AIR MASSES & FRONTS

WHAT TYPES OF WEATHER ARE CYCLONIC?

Hurricanes 101

• HURRICANE - LOW PRESSURE TROPICAL STORM
THAT STARTS IN THE WESTERN ATLANTIC AND
REACHES WINDS ABOVE 74 MPH

HURRICANE TERMINOLOGY

HURRICANE STATISTICS

- · LARGEST OF ALL THE STORMS
- · APPROXIMATELY 10 PER YEAR
- . NEARLY 400 DEATHS PER YEAR

· SAFFIR-SIMPSON SCALE - SYSTEM FOR CLASSIFYING HURRICANES

	the state of the s	
Strength	Wind Speed	Storm Surge
Category I	74 - 95	4 - 5
Category 2	96 - 110	6 - 8
Category 3	111 - 130	9 - 12
Category 4	131 - 155	13 - 18
Category 5	> 155	> 18

HURRICANE DANGERS

· SEVERE WINDS FROM 74 - 155 MPH

HURRICANE DANGERS

WIND DIRECTION IS

COUNTERCLOCKWISE

AND INWARD

HURRICANE DANGERS

• STORM SURGE - A DOME OF WATER 40 TO 60 MILES
LONG THAT MOVES ONTO SHORE NEAR THE
LANDFALL POINT OF THE HURRICANE

HURRICANE FORMATION

- 1. THE SUN HEATS UP OCEAN WATER (ESPECIALLY NEAR THE EQUATOR)
- 2. BY THE END OF SUMMER, OCEAN TEMPERATURES REACH INTO THE 80'S

HURRICANE FORMATION

- 3. A THUNDERSTORM MOVES WESTWARD OFF OF AFRICA AND INTO THE ATLANTIC OCEAN
- 4. WHEN UPPER WIND VELOCITIES ARE LOW,
 THUNDERSTORMS ARE GIVEN A CHANCE TO GAIN
 STRENGTH

HURRICANE FORMATION

- 5. THE FAST RISING AIR (SUPPLIED BY THE WARM OCEAN) ALLOWS THE THUNDERSTORM TO GAIN STRENGTH
- 6. AS IT GROWS, EARTH'S ROTATION CAUSES IT TO SPIN COUNTERCLOCKWISE (CORIOLIS EFFECT)

HURRICANE FORMATION

7. AS THEY BUILD A THUNDERSTORM CHANGES TO A
TROPICAL DEPRESSION, THEN A TROPICAL STORM,
AND FINALLY A HURRICANE

Hurricane Katrina Aftermath

Hurricane Katrina was the costliest natural disaster and one of the five deadliest hurricanes in the history of the United States.

Highest wind speed: 174 mph

<u>Date</u>: August 23, 2005 – August 31, 2005 <u>Category</u>: Category 5 Hurricane (SSHS)

Fatalities: 1,836

Affected areas: New Orleans, Cuba, Louisiana,

Alabama, Georgia, & More

(Source: Wikipedia)

Questions?

Joplin, Missouri Tornado: May 2011

The 2011 **Joplin tornado** was a catastrophic EF5-rated multiple-vortex **tornado** that struck **Joplin**, **Missouri**, late in the afternoon of Sunday, May 22, 2011. It was part of a larger late-May **tornado** outbreak and reached a maximum width of nearly 1 mile (1.6 km) during its **path** through the southern part of the city.

(Source: Wikipedia)

• TORNADO - A ROTATING

COLUMN OF AIR RANGING IN

WIDTH FROM A FEW YARDS TO

MORE THAN A MILE AND

WHIRLING AT DESTRUCTIVELY

HIGH WINDS

TORNADO STATISTICS

- · MOST VIOLENT STORMS
- · APPROXIMATELY 1000 PER YEAR
- . NEARLY 50 DEATHS PER YEAR

TORNADO DANGERS

. SEVERE WINDS FROM 250 MPH AND ABOVE

TORNADO FORMATION

- 1. DEVELOP FROM AN INTENSE THUNDERSTORM
- 2. HEATING IS VERY INTENSE AND WARM AIR RISES IN STRONG CONVECTION CURRENTS

TORNADO FORMATION

- 3. THE RISING AIR CAUSES A LOW PRESSURE CENTER
- 4. AS AIR RUSHES INTO THE CENTER IT STARTS TO SPIN UPWARD

"How Tornadoes Form"

Hurricanes vs. Tornadoes: How Are They Similar? How Are They Different?

Hurricanes vs. Tornadoes: How Are They Similar? How Are They Different?

Questions?

WHAT TOOLS DO WE USE TO HELP PREDICT THE WEATHER?

- THERMOMETER INSTRUMENT USED TO MEASURE TEMPERATURE
 - · DIFFERENT SCALES INCLUDE:
 - · CELSIUS
 - · FAHRENHEIT
 - · KELVIN

ESRT page 13

TEMPERATURE

- BAROMETER INSTRUMENT USED TO MEASURE AIR PRESSURE
 - . DIFFERENT SCALES INCLUDE:
 - · INCHES OF MERCURY
 - · MILLIBARS

Pressure 1025.0-1012.0-1008.0 - 29.60 1000.0 29.50 984.0-29.00

ESRT page 13

PRESSURE CONVERSION

ANEMOMETER - INSTRUMENT USED TO MEASURE
WIND SPEED

- . DIFFERENT SCALES INCLUDE:
 - · KNOTS
 - · MILES PER HOUR

· WEATHER VANE - INSTRUMENT

USED TO MEASURE WIND DIRECTION

· MEASURES DIRECTION USING COMPASS DIRECTIONS

- RELATIVE HUMIDITY THE AMOUNT OF WATER VAPOR IN THE AIR AT ANY GIVEN TIME
 - TO CALCULATE RELATIVE HUMIDITY YOU NEED
 A DRY BULB TEMPERATE, DIFFERENCE IN WET
 BULB AND DRY BULB TEMPERATURE, AND THE
 E.S.R.T.

ESRT page 12

Dry-Bulb Tempera-		Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)														
ture (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-20	100	28														
-18	100	40														
-16	100	48														
-14	100	55	11													
-12	100	61	23													
-10	100	66	33													
-8	100	71	41	13												
-6	100	73	48	20												
-4	100	- 77	54	32	11											
-2	100	79	58	37	20	- 1										
0	100	81	63	45	28	- 11										
2	100	83	67	51	36	20	6									
4	100	85	70	56	42	27	14									
6	100	86	72	59	46	35	22	10								
8	100	87	74	62	51	39	28	17	6							
10	100	88	76	65	54	43	33	24	13	4						
12	100	88	78	67	57	48	38	28	19	10	2					
14	100	89	79	69	60	50	41	33	25	16	8	1				
16	100	90	80	71	62	54	45	37	29	21	14	7	1			
18	100	91	81	72	64	56	48	40	33	26	19	12	- 6			
20	100	91	82	74	66	58	51	44	36	30	23	17	11	- 5		
22	100	92	83	75	68	60	53	46	40	33	27	21	15	10	4	
24	100	92	84	76	69	62	55	49	42	36	30	25	20	14	9	4
26	100	92	85	77	70	64	57	51	45	39	34	28	23	18	13	9
28	100	93	86	78	71	65	59	53	47	42	36	31	26	21	17	12
30	100	93	86	79	72	66	61	55	49	44	39	34	29	25	20	16

ESRT page 12

WEATHER INSTRUMENTS

- DEW POINT THE TEMPERATURE AT WHICH AIR

 MUST BE COOLED FOR WATER VAPOR TO CONDENSE
 - TO CALCULATE DEWPOINT YOU NEED

 A DRY BULB TEMPERATE, DIFFERENCE IN WET

 BULB AND DRY BULB TEMPERATURE, AND THE

 E.S.R.T.

Dry-Bulb Tempera- ture (°C)		Difference Between Wet-Bulb and Dry-Bulb Temperatures (C°)														
ture (°C)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
-20	-20	-33														
-18	-18	-28														
-16	-16	-24														
-14	-14	-21	-36													
-12	-12	-18	-28													
-10	-10	-14	-22													
-8	-8	-12	-18	-29												
-6	-6	-10	-14	-22												
-4	-4	-7	-12	-17	-29											
-2	-2	-5	-8	-13	-20											
0	0	-3	-6	-9	-15	-24										
2	2	-1	-3	-6	-11	-17										
4	4	1	-1	-4	-7	-11	-19									
6	6	4	1	-1	-4	-7	-13	-21								
8	- 8	- 6	3	1	-2	-5	-9	-14								
10	10	- 8	6	4	1	-2	-6	-9	-14	-28						
12	12	10		- 6	4		-2	-5	-9	-16						
14	14	12	- 11	9	- 6	4	1	-2	-5	-10	-17					
16	16	14	13	11	9	7	4	1	-1	-6	-10	-17				
18	18	16	15	13	- 11	9	7	4	2	-2	-5	-10	-19			
20	20	19	17	15	14	12	10	- 7	4	2	-2	-6	-10	-19		
22	22	21	19	17	16	14	12	10	8	- 5	3	-1	-5	-10	-19	
24	24	23	21	20	18	16	14	12	10		6	2	-1	-5	-10	-18
26	26	25	23	22	20	18	17	15	13	- 11	9	- 6	3	0	-4	-9
28	28	27	25	24	22	21	19	17	16	14	- 11	9	7	4	- 1	-3
30	30	29	27	26	24	23	21	19	18	16	14	12	10	8	5	1

ESRT page 12

Questions?

WEATHER INSTRUMENTS

· STATION MODEL - SYMBOL ON A WEATHER MAP THAT ILLUSTRATE ALL THE WEATHER CONDITIONS

ATTHAT LOCATION

ESRT page 13

"Station Models"

Questions?

Lab 15: Weather Instruments

- You are now ready to complete Lab 15: Weather Instruments
- Worth: 90 Minutes
- Use your notes and your understanding of station models to complete all activities in your lab

WHAT WEATHER VARIABLES HELP PREDICT WEATHER?

- TROPOSPHERE THE LOWEST PORTION OF THE
 ATMOSPHERE WHERE TEMPERATURE DECREASES
 - · WEATHER OCCURS IN THIS LAYER ONLY

ESRT page 14

• STRATOSPHERE - A REGION OF THE ATMOSPHERE WHERE TEMPERATURE INCREASES

ESRT page 14

EARTH'S LAYERS

• MESOSPHERE - A REGION OF THE ATMOSPHERE
WHERE TEMPERATURE DECREASES AGAIN

ESRT page 14

EARTH'S LAYERS

• THERMOSPHERE - THE OUTER MOST SHELL OF THE ATMOSPHERE WHERE TEMPERATURE INCREASES

ESRT page 14

EARTH'S LAYERS

ESRT page 14

EARTH SCIENCE REFERENCE TABLES

- WEATHER THE PRESENT CONDITION OF THE ATMOSPHERE -- INCLUDING TEMPERATURE, PRESSURE, WIND, HUMIDITY, AND MOVEMENT
 - · CHANGES ARE DUE MAINLY TO UNEQUAL HEATING OF LAND MASSES, OCEANS, AND THE ATMOSPHERE

- TEMPERATURE THE HEAT ENERGY PRESENT IN THE ATMOSPHERE AT THAT LOCATION
 - INFLUENCES AFFECTING TEMPERATURE ARE SOLAR RADIATION, ANGLE OF INSOLATION, HOURS OF DAYLIGHT, AND REFLECTION OFF THE ATMOSPHERE

- AIR PRESSURE THE FORCE EXERTED ON A UNIT OF
 AREA BY THE AIR THAT IS EXERTED EQUALLY IN
 EVERY DIRECTION
 - · AIR IS A MIXTURE OF GASES WITH MOLECULES THAT ARE FAST MOVING AND FAR APART

- · AIR PRESSURE INCREASES AS YOU DECREASE
 YOUR ELEVATION
- · AIR PRESSURE DECREASES AS YOU INCREASE

YOUR ELEVATION

ESRT page 14

- · AIR CURRENTS RISING OR SINKING MOVEMENT OF AIR PERPENDICULAR TO THE GROUND
- WIND THE HORIZONTAL MOVEMENT OF AIR
 PARALLEL TO THE EARTH'S SURFACE
 - WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

- SEA BREEZE DURING THE DAY LAND HEATS UP FASTER THAN THE WATER, THUS CREATING A LOW PRESSURE ZONE OVER THE LAND
 - WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

- LAND BREEZE DURING THE NIGHT LAND COOLS
 FASTER WHILE WATER HOLDS ITS HEAT, THUS
 CREATING A LOW PRESSURE ZONE OVER THE
 WATER
 - * WIND BLOWS FROM AREAS OF HIGH PRESSURE TO AREAS OF LOW PRESSURE

LAND BREEZE

CLOUD FORMATION

- AIR IS WARMED FROM SUN
 HEATED SURFACES BECOMING
 LESS DENSE AND RISING
- AS IT RISES IT EXPANDS AND

 DECREASES IN TEMPERATURE

 AND PRESSURE

CLOUD FORMATION

- · WATER VAPOR IN THE AIR THEN CONDENSES AS THE AIR IS COOLED TO THE DEWPOINT
 - · CONDENSATION THE PROCESS WHICH GAS TURNS TO A LIQUID
- · REMEMBER: R.E.C.C.
 - · RISES EXPANDS COOLS CONDENSES

Questions?

Lab 16: Weather Variables

- You are now ready to complete Lab 16: Weather Variables
- Worth: 90 Minutes
- Use your notes and your understanding of drawing isolines, calculating gradient, and creating line graphs to complete all activities in your lab

AIR MASSES AND FRONT

HOW ARE AIR MASSES AND FRONTS RELATED TO WEATHER?

- · AIR MASS CHARACTERISTICS OF THE AIR
 IDENTIFIED BY TEMPERATURE AND MOISTURE
- SOURCE REGION LOCATION OVER WHICH AN AIR MASS GETS ITS CHARACTERISTICS
 - AIR MASSES ARE NAMED AFTER THEIR

 SOURCE REGION AND ARE DESIGNATED BY

 LETTERS

Air Masses

cA continental arctic

cP continental polar

cT continental tropical

mT maritime tropical

mP maritime polar

ESRT page 13

AIR MASSES & SOURCE REGIONS

AIR MASSES & SOURCE REGIONS

WHEN TWO UNLIKE

AIR MASSES COLLIDE

A WEATHER FRONT IS

CREATED

THE BOUNDARY BETWEEN
 THE TWO DIFFERENT AIR
 MASSES IS REPRESENTED
 ON A MAP WITH A SYMBOL

ESRT page 13

 THE SIDE THAT THE SHAPES ARE ON SHOWS THE DIRECTION THE FRONT IS MOVING TOWARDS

- · COLD FRONT A BOUNDARY WHERE MORE DENSE COLD AIR ADVANCES UNDER LESS DENSE WARM AIR PUSHING IT UPWARD
 - · WEATHER: THUNDERSTORMS, HEAVY RAIN, AND A SHARP DECREASE IN TEMPERATURE

WEATHER PATTERNS

- WARM FRONT A BOUNDARY WHERE LESS DENSE
 WARM AIR ADVANCES OVER THE TOP OF MORE
 DENSE COLD AIR
 - * WEATHER: LOW CLOUDS AND WIDESPREAD RAINFALL

WEATHER PATTERNS

- STATIONARY FRONT FORMS ALONG A BOUNDARY WHERE NEITHER AIR MASS IS MOVING
 - · WEATHER: LONG WIDESPREAD RAIN

WEATHER PATTERNS

- OCCLUDED FRONT A BOUNDARY WHERE A FAST
 MOVING COLD FRONT PUSHES WARM AIR ENTIRELY
 ALOFT
 - * WEATHER: LONG WIDESPREAD RAIN AND THUNDERSTORMS

U.S. SYNOPTIC WEATHER MAP

Questions?

Unit 8 Part II: Water & Climate

TOPIC 1: THE WATER CYCLE

TOPIC 2: CLIMATE VARIABLES

TOPIC 3: RAINFALL PATTERNS

How does water move and change phases in the atmosphere?

- Ever since the outgassing of water vapor 4 billion years ago, Earth has been recycling its water supply
 - Earth's has not gained or lost water since

- * The Water Cycle the model used to illustrate the movement and the phase changes of water at or near Earth's surface
 - The water cycle is fueled by solar energy (insolation) and gravity

- Evaporation when the Sun warms up liquid water and turns it into water vapor
- Condensation when water vapor turns into liquid water

 Transpiration - the process of water moving through plant and changing to vapor before being released into the atmosphere

- Precipitation the product of the condensation that falls from the sky
 - Examples: rain, snow, sleet and hail

- When precipitation falls it can:
 - Be stored on land surfaces as ice and snow
 - Infiltrate into the upper parts of the lithosphere
 - Flow over Earth's surface as runoff
 - Be evaporated or undergo transpiration

 Infiltration - the process by which water enters a substance

- Factors Affecting Infiltration:
 - Slope of the Land steeper slopes do not give time for water to infiltrate the ground

- Factors Affecting Infiltration:
 - Degree of Saturation the amount of water already in the ground

- Factors Affecting Infiltration:
 - 3. Porosity the percentage of open space (pores and cracks) in the ground

- Factors Affecting Infiltration:
 - 4. Permeability a measure of how easily fluid flows through a porous solid

- Factors Affecting Infiltration:
 - 5. <u>Capillarity</u> the action by which water moves against the downward pull of gravity

- Factors Affecting Infiltration:
 - 6. Vegetation plants absorb water from the ground

Water Cycle Review: "Fill in the Blanks"

Water Cycle Review: "Fill in the Blanks"

Questions?

What factors contribute to the different climate regions on Earth?

Before we look at "climate variables," first we must ask... WHAT IS <u>CLIMATE</u>??

• CLIMATE IS...

 Climate - the overall view of a regions weather conditions over a long time span

Latitude and Temperature

- Temperature is affected by latitude, the angle of insolation, intensity, and duration of sunlight
 - Low Latitudes: high angle of insolation
 - * High Latitudes: low angle of insolation

Latitude and Temperature

Planetary Winds

- Prevailing Winds movement of air over the Earth's surface that blows from the same direction
- Winds are caused by pressure differences
- United States has the prevailing southwesterly winds

ESRT pg. 14

Planetary Wind and Moisture Belts in the Troposphere

In Your Notes...

- Shade easterly winds GREEN
- Shade westerly winds ORANGE
- Color "wet" belts BLUE
- Color "dry" beltsRED

Latitude and Moisture

- Moisture content varies with latitude because of the planetary winds
 - Low Pressure at the equator causes air to rise, expand, cool, and condense to form clouds and rain
 - High pressure causes air to sink and form arid regions

Latitude and Moisture

Large Bodies of Water

- Oceans, seas, lakes, and bays serve to modify climate regions
- Land masses close to a body of water will be regulated by the slow rate of heating and cooling of water
 - * Example: Long Island, Lake Ontario Shore

Ocean Currents

- Coastal climates are modified by ocean currents
 - Warm waters flow from the equator towards colder regions
 - Cold waters flow from the poles towards warmer region

ESRT pg. 4

In Your Notes...

- Trace cold current lines/arrows (thick) BLUE
- Trace warm current lines/arrows (thin) RED

Surface Ocean Currents

Elevation

 Higher elevations are cooler due to temperatures decreasing in the troposphere

ESRT pg. 14

Selected Properties of Earth's Atmosphere

In Your Notes...

- Shade the temperature line RED as it increases
- Shade the temperature line BLUE as it decreases
- Shade the layers of the atmosphere as follows:
 - Troposphere = Green
 - Stratosphere = Yellow
 - Mesosphere = Purple
 - Thermosphere = Orange

Mountains

- Mountains intersect planetary winds and modify climate regions
- As the winds rise up the mountain, the air rises, expands, cools, and condenses, creating a cooler more moist region
- As the winds descend the mountain the moisture is lost creating a warm and dry region

Mountains Modifying Climate

Mountains Modifying Climate

Daytime Cloud Cover

 Clouds: sunlight is blocked from warming up earth surface and heat energy is radiated back into space

Daytime Cloud Cover

 No Clouds: sunlight reaches earths surface and heat energy warms the surface

Nighttime Cloud Cover

 <u>Clouds</u>: heat energy is trapped and not allowed to reradiate back into space

Nighttime Cloud Cover

 No Clouds: heat energy is allowed to escape and reradiate back into space

Questions?

Lab 17: Climate Variables

- You are now ready to complete Lab 17: Climate Variables
- Worth: 120 Minutes
- Use your notes and your understanding of the factors that influence the climate to complete all activities in your lab

How does geography effect rainfall patterns?

Hawaii

The Big Island's Topography

The Hawaiian Islands

 The big island is located between 0° and 30° N with the prevailing winds from the Northeast

Prevailing Wind Direction

 Mountains that intersect prevailing winds can modify climate patterns

Windward - the side the wind strikes first

Windward Side

- Air rises
- Air expands and cools
- Air condenses and rains
- Lots of vegetation
- Plenty of rain

Leeward - opposite
 the side the
 wind is blowing

Leeward Side

- Air sinks
- Air contracts
- Air warms
- Minimal rain
- Minimal vegetation

The Big Island's Precipitation

Questions?